Traduzir o blog

quarta-feira, 11 de maio de 2016

Planetas e Exoplanetas.



   O nosso sistema solar é constituído de oito planetas clássicos (Mercúrio, Vênus, Terra, Marte, Júpter, Saturno, Urano e Netuno, na ordem do mais próximo para o mais afastado do Sol), já excluindo o rebaixado Plutão, que deixou de ser planeta e passou a ser um planeta anão. Existe uma possibilidade de termos novamente um nono planeta, caso se confirme a existência do Planeta Nove, como já foi apelidado. Esse planeta demoraria de 10 a 20 mil anos terrestres para orbitar o sol, além de possuir uma massa estimada de  aproximadamente dez vezes a da Terra. Mas como ainda não foi visto, fica só na hipótese.
   Desde que o telescópio Kepler foi lançado, em março de 2009, com a missão de vasculhar o cosmo, a procura de planetas extrassolares, ou comumente chamados de exoplanetas, muitos já foram achados: De lá para cá (até 10/05/16) já são 3,235 exoplanetas descobertos pelo Kepler, sendo que desses, trinta são potencialmente habitáveis. Cada vez mais nos deparamos com expectativas de encontrarmos vida lá fora, seja microbiana, humanóide (por definição: é todo o ser que tem aparência semelhante ou que mesmo lembre um humano, mas não o sendo) ou alienígena. Nosso amigo Kepler pode nos ajudar quanto a essa questão, ou pelo menos instigá-la cada vez mais.
   Durante a vigésima sexta reunião da União Astronômica Internacional (UAI), tivemos uma mudança na definição de planeta; mudança essa que rebaixou Plutão. Vejamos: 
  Para ser considerado:
  Planeta Clássico (antigo planeta): tem que orbitar o Sol, ter massa suficiente para ter gravidade própria para superar as forças rígidas de um corpo de modo que assuma uma força equilibrada hidrostática, ou seja, redonda e que definiu as imediações de sua órbita.
  Planeta Anão:  tem que orbitar o Sol,  ter massa suficiente para ter gravidade própria para superar as forças rígidas de um corpo de modo que assuma uma forma equilibrada hidrostática, ou seja, redonda mas que não definiu as imediações de sua órbita e não seja satélite.
  Pequeno Corpo: tem que orbitar o Sol; não ser satélite.
 Embora nos referimos ao termo planeta, fica implícito  planeta clássico.
 Obviamente, esses corpos, quando fora do nosso sistema solar, são exo (fora, de fora). Por exemplo, o planeta Kepler 438b é um exoplaneta , pois possui as características do planeta clássico. Sua estrela é a Kepler 438, e dista aproximadamente 470 anos-luz da Terra.
  Bom, aguardemos a evolução natural dos acontecimentos.
   Até a próxima!

Se inscreva no canal do Youtube 
*
*
Compartilhe e ajude a divulgar o conhecimento.
Me adicione no facebook




segunda-feira, 4 de abril de 2016

Efeito Cherenkov

Pavel Cherenkov estudou efeitos de substâncias radioativas em líquidos, e descobriu, em 1933, que algumas substâncias radioativas quando imersas na água, emitiam um fraco brilho azulado. Por descobrir o efeito e explica-lo, Pavel e outros dois físicos (Il´ja Mikhailovich Frank and Igor Yevgenyevich Tamm) foram laureados com o prêmio Nobel de física em 1958.
                A radiação Cherenkov ocorre quando partículas carregadas possuem velocidades maiores do que a da luz em um meio particular, como a água por exemplo. A velocidade limite da luz no vácuo é de aproximadamente 3x10^8 m/s. Mas uma partícula pode se mover a uma velocidade maior do que a da luz em outro meio que não o vácuo, como a água. Essas partículas são oriundas de substâncias radioativas, como aquelas usadas para gerar energia em um reator nuclear.
                As moléculas de água são excitadas por essas partículas que viajam mais rápido do que a luz na água, e emitem uma luz azul quando retornam ao seu estado de equilíbrio energético. Isso forma um tipo de cone que se propaga para frente, como se estivesse seguindo a partícula que viaja mais rápido do que a luz.

                Esse efeito é visível em usinas nucleares, na qual a água circunda o material radioativo usado para produzir energia térmica, e também é visível em detectores de partículas, como neutrinos, onde essa radiação é utilizada como traçador, ou seja, uma forma indireta de saber que houve uma detecção de um neutrino.

Se inscreva no canal no Youtube 
https://www.youtube.com/channel/UCTs3GNMp2cnLIWNd3dAPm4g
*
*
Compartilhe e ajude a divulgar o conhecimento.
Me adicione no facebook
facebook.com/leonardo.pacifico.12

sexta-feira, 4 de março de 2016

Radiação ionizante natural (parte1)

De uma forma de geral, associa - se a doença câncer à radiação ionizante. E essa radiação ionizante está associada à  procedimentos realizados em ambientes hospitalares, tais como radiografias, tomografias, radioterapias, medicina nuclear, dentre outros.
Mas talvez o que poucos sabem, é que essa radiação ionizante se apresenta de forma natural na natuteza; obviamente em menor intensidade do que as usada no ambiente hospitalar.
Mas antes de entrarmos nessa discussão, façamos uma breve recapitulação do que vem a ser radiação ionizante: radiação ionizante é aquela com energia  suficiente para ejetar um elétron da eletrosfera de seu átomo. Surge, então, uma configuração eletrônica de modo que a carga líquida da átomo seja positiva  (considerando o átomo neutro ). Por exemplo,  o átomo mais simples na natureza, é o hidrogênio. Ele possui um elétron e um próton. Sua carga líquida é zero, pois o elétron negativo mais o próton positivo resulta em zero.
Agora,  se uma radiação incide nesse elétron e o ejeta,  a carga líquida agora será positiva. Dizemos então que o átomo está ionizado, com alto poder de reatividade, uma vez que tenderá buscar o equilíbrio novamente, adquirindo um novo elétron. Também podemos dizer que um par iônico foi criado ( elétron negativo que agora está livre mais o átomo positivo de hidrogênio).
Com isso em mente,  passemos as radiações ionizantes naturais.
×
×
Mas falarei numa próxima postagem. Se inscreva no blog para receber a notificação!!
Até breve.
×
×
adicione-me no Facebook
Curta a página no Facebook

segunda-feira, 29 de fevereiro de 2016

Férmions e Bósons

 
 Nas aulas de química no ensino médio, aprendemos que um elétron é endereçado no átomo através de quatro parâmetros (ou números quânticos), a saber: Número quântico principal (n), número quântico secundário, ou azimutal (l), número quântico magnético (m) e o número quântico spin (s).
    Esses quatro números juntos, são o "endereço" do elétron no átomo. E nenhum elétron pode ter o mesmo endereço; são solitários. Em 1925, Wolgang Pauli formulou o que ficou conhecido como "princípio da exclusão de Pauli", que enuncia a impossibilidade de dois elétron ocuparem o mesmo lugar em um orbital (ou terem os quatro números quânticos iguais). Lembrando que na mecânica quântica, o elétron se comporta como onda e partícula (princípio da dualidade), e chamamos de orbital, a região no espaço ao redor do núcleo atômico onde é máxima a probabilidade de encontrá-lo. 
    Resumidamente, n está associado ao nível de energia do elétron no átomo (camada k,l,m..); l à forma do orbital na qual o elétron pode se encontrar (são as subcamadas ou subníveis de energia); m diz respeito à orientação do orbital e s à orientação do momento magnético do elétron (para cima, para baixo).
    Pelo fato de ser impossível "estarem" em dois lugares ao mesmo tempo, e terem spin (s) -1/2 ou +1/2 (orientação para baixo e para cima, respectivamente), os elétrons são chamados de férmions. Podemos definir também os férmions como aquelas partículas que possuem spin semi-inteiro e obedecem ao princípio de exclusão de Pauli. Outras partículas que são férmions: quarks, pósitrons, múon, tal, etc.
   Existem partículas que podem estar em dois lugares ao mesmo tempo (podem possuir os quatro números quânticos iguais). São os chamados bósons (fótons, glúon, bóson W e bóson Z, etc.). Essas partículas possuem spin inteiro e não obedecem ao princípio de exclusão de Pauli. Isso quer dizer que dois bósons podem ocupar o mesmo lugar no orbital (podem ter os  quatro números quânticos iguais). Um exemplo ocorre no chamada condensado de Bose-Eisntein, onde um gás de bósons é resfriados a uma temperatura próximo a do zero absoluto (-273,15 C°). Nessa condição, essas partículas ocupariam estados muito baixos de energia conjuntamente, originando uma nova forma de matéria. Fenômenos de super fluidez são explicados por esse condensado.
   Por fim, na natureza ou temos bósons ou temos férmions. E graças às interações a nível microscópico dessas partículas, podemos vivenciar o mundo macroscópico.
    Até a próxima!

sexta-feira, 26 de fevereiro de 2016

Física moderna e atualdiade

   
   Podemos dizer que a física moderna se estabeleceu com as teorias da relatividade restrita e geral, de Albert Einstein e da teoria quântica, iniciada por Max Planck, com a ideia de quantização da energia. O fato é que toda nossa tecnologia de hoje está ligada, de alguma forma, à física moderna. 
     Por exemplo, na determinação de uma posição via Global Positioning System (GPS), ou sistema de posicionamento global, correções relativísticas devem ser incorporadas para que tenhamos uma precisão da ordem de metros; por outro lado, a evolução computacional está caminhando cada vez mais rápida para a era da computação quântica. 
      Graças à física moderna, conhecemos hoje o comportamento dual da matéria, isto é, uma onda pode se comportar como partícula e vice-versa. Isso explica, por exemplo, os efeitos fotoelétricos e Compton, fundamentais no estudo da interação radiação com a matéria. Também a descoberta por Wilhelm Roentgen dos raios x acelerou absurdamente a sobre vida de uma infinidade de pessoas, ao se diagnosticar doenças. A física moderna, assim como a física em geral, sempre estará entre nós!
*
*
*
*
Curta a página no facebook: 
Se inscreva no canal no Youtube e receba vídeo aulas:

*

Siga o blog!